G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors.
View Article and Find Full Text PDFStress carries diverse implications for perceptual, cognitive, and affective functions. One population particularly susceptible to acute stress-induced cognitive changes are individuals with high-stress jobs (e.g.
View Article and Find Full Text PDFEndogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids.
View Article and Find Full Text PDFIntroduction: Personnel performance under stress hinges on various factors, including individual traits, training, context, mental and physiological states, and task demands. This study explored the link between the traits of military personnel and their performance outcomes in five domains: move, shoot, communicate, navigate, and sustain.
Methods: A total of 387 U.