Publications by authors named "M Ebnali-Heidari"

This Letter presents a new family of Schottky graphene/silicon (Si) photodetectors (PDs) based on hollow-core photonic crystal fibers (HPCFs), working at both optical communication and room temperature. The proposed structure has the advantage of plasmonic HPCFs in a slow-light regime, and the absorption mechanism is based on an internal photoemission effect. The main feature of this structure is that the enhanced electric field is strongly localized in the hollow core of the guided core mode with the surface plasmon modes at the surface metal wires embedded in the photonic crystal structure.

View Article and Find Full Text PDF

Background: Using in-vehicle audio technologies such as audio systems and voice messages is regarded as a common secondary task. Such tasks, known as the sources of non-visual distraction, affect the driving performance. Given the elderly drivers' cognitive limitations, driving can be even more challenging to drivers.

View Article and Find Full Text PDF

Using numerical analysis, we compare the results of optofluidic and rod filling techniques for the broadening of supercontinuum spectra generated by As2Se3 chalcogenide photonic crystal fibers (PCFs). The numerical results show that when air-holes constituting the innermost ring in a PCF made of As2Se3-based chalcogenide glass are filled with rods of As2Se3-based chalcogenide glass, over a wide range of mid-IR wavelengths, an ultra-flattened near-zero dispersion can be obtained, while the total loss is negligible and the PCF nonlinearity is very high. The simulations also show that when a 50 fs input optical pulse of 10 kW peak power and center wavelength of 4.

View Article and Find Full Text PDF

We present a numerical design procedure for an all-optical compact sensor by means of integrating the optofluidic switch polymer interferometers to measure the microfluidic air pressure and flow rate. The design is based on a flexible air gap optical cavity that can generate an interference pattern when illuminated by a monochromatic light. The optical interference pattern directly depends on the pressure.

View Article and Find Full Text PDF

We present the design procedure for an ultracompact low-power all-optical modulator based on a dispersion-engineered slow-light regime in a photonic crystal Mach-Zehnder interferometer (PhC MZI), selectively infiltrated by nonlinear optical fluids. The dispersionless slow-light regime enhancing the nonlinearities enabled a 22 μm long PhC MZI to operate as a modulator with an input power as low as 3 mW/μm. Simulations reveal that the switching threshold can be controlled by varying the optofluidic infiltration.

View Article and Find Full Text PDF