Publications by authors named "M E Sieracki"

Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E).

View Article and Find Full Text PDF

Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood.

View Article and Find Full Text PDF

The predominant model of the role of viruses in the marine trophic web is that of the "viral shunt," where viral infection funnels a substantial fraction of the microbial primary and secondary production back to the pool of dissolved organic matter. Here, we analyzed the composition of non-eukaryotic DNA associated with individual cells of small, planktonic protists in the Gulf of Maine (GoM) and the Mediterranean Sea. We found viral DNA associated with a substantial fraction cells from the GoM (51%) and the Mediterranean Sea (35%).

View Article and Find Full Text PDF

The stramenopiles are a large and diverse group of eukaryotes that possess various lifestyles required to thrive in a broad array of environments. The stramenopiles branch with the alveolates, rhizarians, and telonemids, forming the supergroup TSAR. Here, we present a new genus and species of aquatic nanoflagellated stramenopile: Mediocremonas mediterraneus, a free-swimming heterotrophic predator.

View Article and Find Full Text PDF

Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa.

View Article and Find Full Text PDF