N6-methyladenosine (m6A) is present at internal sites in mRNA isolated from all higher eukaryotes, but has not previously been detected in the mRNA of the yeast Saccharomyces cerevisiae. This nucleoside modification occurs only in a sequence- specific context that appears to be conserved across diverse species. The function of this modification is not fully established, but there is some indirect evidence that m6A may play a role in the efficiency of mRNA splicing, transport or translation.
View Article and Find Full Text PDFThe alternative splicing of the last intron (intron D) of bovine growth hormone (bGH) pre-mRNA requires a down-stream exonic splicing enhancer (FP/ESE). The presence of at least one SR protein has been shown to be essential for FP/ESE function and splicing of intron D in in vitro splicing assays. However, in vitro reconstitution of splicing using individual purified SR proteins may not accurately reflect the true complexity of alternative splicing in an intact nucleus, where multiple SR proteins in varying amounts are likely to be available simultaneously.
View Article and Find Full Text PDFThe methylation of internal adenosine residues in eukaryotic mRNA, forming N6-methyladenosine (m6A), is catalyzed by a complex multicomponent enzyme. Previous studies suggested that m6A affects the efficiency of mRNA processing or transport, although the mechanism by which this occurs is not known. As a step toward better understanding the mechanism and function of this ubiquitous posttranscriptional modification, we have shown that HeLa mRNA (N6-adenosine)-methyltransferase requires at least two separate protein factors, MT-A and MT-B, and MT-A contains the AdoMet binding site on a 70-kDa subunit (MT-A70).
View Article and Find Full Text PDFThe N6-methylation of internal adenosine residues is a common post-transcriptional modification of eukaryotic pre-mRNA sequences. An in vitro methylation system which retains the precise selectivity of in vivo methylation sites has been used to further define the nature of RNA site recognition. In addition to short consensus sequences, other structural features or context effects contribute to the selection of methylation sites in pre-mRNAs.
View Article and Find Full Text PDF