Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored.
View Article and Find Full Text PDFTriple quadrupole mass spectrometers are generally considered the instrument of choice for quantitative analysis. However, for the analysis of large peptides we have encountered some cases where, as the data presented here would indicate, ion trap mass spectrometers may be a good alternative. In general, specificity and sensitivity in bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays are achieved via tandem MS (MS/MS) utilizing collision-induced dissociation (CID) while monitoring unique precursor to product ion transitions (i.
View Article and Find Full Text PDF11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes.
View Article and Find Full Text PDFMethyltransferases form a large class of enzymes, most of which use S-adenosylmethionine as the methyl donor. In fact, S-adenosylmethionine is second only to ATP in the variety of reactions for which it serves as a cofactor. Several methods to measure methyltransferase activity have been described, most of which are applicable only to specific enzymes and/or substrates.
View Article and Find Full Text PDFA novel series of dihydro- and tetrahydrotriazolopyridazine-1,3-dione-based amino acid derivatives were identified as very potent motilin receptor agonists. Incorporating one additional phenylethyl glycinamide subunit to 1 (EC(50) = 660 nM) was found to improve in vitro potency approximately 3000-fold, resulting in compound 10 (EC(50) = 0.22 nM).
View Article and Find Full Text PDF