Publications by authors named "M E Reilly"

Traumatic optic neuropathy (TON) is a common cause of irreversible blindness following head injury. TON is characterized by axon damage in the optic nerve followed by retinal ganglion cell death in the days and weeks following injury. At present, no therapeutic or surgical approach has been found to offer any benefit beyond observation alone.

View Article and Find Full Text PDF

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the most common global cause of chronic liver disease and remains under-recognized within healthcare systems. Therapeutic interventions are rapidly advancing for its inflammatory phenotype, nonalcoholic steatohepatitis (NASH) at all stages of disease. Diagnosis codes alone fail to recognize and stratify at-risk patients accurately.

View Article and Find Full Text PDF

Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), leading to increased symptom burden and risk of thromboembolism. The HCM-AF score was developed to predict new-onset AF in patients with HCM, though sensitivity and specificity of this conventional tool are limited. Thus, there is a need for more accurate tools to predict new-onset AF in HCM.

View Article and Find Full Text PDF

Introduction: Accommodation is the process of changing the ocular lens' refractive power and focal distance. This process involves application of biomechanical forces on the lens by the surrounding musculature. Previous studies have demonstrated that the lens epithelium demonstrates mechanotransduction and that tension influences its chemical activity.

View Article and Find Full Text PDF