Publications by authors named "M E Likhachev"

We report on the development of a chirped pulse amplification (CPA) designed erbium fiber source with a hybrid high-power amplifier, which is composed of erbium-doped and erbium/ytterbium-co-doped double-clad large-mode-area fibers. Stretched pulses from the high-power amplifier with up to 21.9 µJ energy and 198.

View Article and Find Full Text PDF

An all-fiber high-power erbium-doped fiber laser (EDFL) source generating optical pulses from 200 µs to 5 ms with a stable rectangular envelope for fractional photo-rejuvenation is proposed and experimentally demonstrated. A master oscillator power amplifier (MOPA) configuration composed of a master oscillator, an acousto-optic modulator (AOM), and a one-stage amplifier is designed and employed in the EDFL to serve as an efficient laser system with excellent output performance. To avoid multistage amplifiers, the master oscillator generates 1.

View Article and Find Full Text PDF

We report the spatiotemporal mode-locked multimode fiber laser operating at 1.55 µm based on semiconductor saturable absorber mirrors with the mode-locking threshold as low as 104 mW. Benefiting from the multimode interference filtering effect introduced in the laser cavity not only the central wavelength can be continuously tuned from 1557 nm to 1567 nm, but also the number of the output pulses can be adjusted from 1 to 4 by simply adjusting the polarization controllers.

View Article and Find Full Text PDF

Prospects for average power scaling of sub-MW output peak power picosecond fiber lasers by utilization of a Yb-doped tapered fiber at the final amplification stage were studied. In this paper, it was shown experimentally that a tapered fiber allows the achievement of an average power level of 150 W (limited by the available pump power) with a peak power of 0.74 MW for 22 ps pulses with no signs of transverse mode instability.

View Article and Find Full Text PDF

We investigate (both theoretically and experimentally) a method for fundamental mode spectral filtering in single-mode optical fibers using the resonant mode coupling effect. We demonstrate the possibility of controlling the spectral bandwidth of the fundamental mode suppression band through appropriate choice of fiber parameters and fiber bending. The developed technique can be very useful for the design of fiber-based spectral filters (i.

View Article and Find Full Text PDF