Publications by authors named "M E Lamm"

Spray drying is a well-established method for preparing amorphous solid dispersion (ASD) formulations to improve the oral bioavailability of poorly soluble drugs. In addition to the characterization of the amorphous phase, particle attributes of spray-dried intermediates (SDIs), including particle size, morphology, and microstructure, need to be carefully studied and controlled for optimizing drug product performance. Although recent developments in microscopy technology have enabled the analysis of morphological attributes for individual SDI particles, a high-throughput method is highly desirable.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASDs) have been extensively utilized to improve the bioavailability of drugs that have low aqueous solubility. The influence of different excipients on the conversion of amorphous drugs into their crystalline forms in ASDs has been extensively researched. However, there is limited knowledge examining the impact of film coating materials on the physical stability of oral tablet formulations containing ASDs.

View Article and Find Full Text PDF

Lignin-containing cellulose nanofibrils (LCNFs) are mainly produced commercially from treated wood pulp, which can decrease some of the carbon-negative benefits of utilizing biomass feedstock. In this work, LCNFs are prepared from non-wood feedstocks, including agricultural residues such as hemp, wheat straw, and flax. These feedstocks allowed for the preparation of LCNFs with a variety of properties, including tailored hydrophobicity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the potential of cellulose nanofibrils (CNFs) as eco-friendly materials, highlighting their lightweight and biodegradable properties, making them suitable for next-generation composites and bioplastics.
  • - Atomistic molecular dynamics simulations identified a NaOH and urea aqueous solution as an effective medium to reduce energy consumption during CNF production by about 21% compared to water, while maintaining similar properties.
  • - The findings suggest a new approach for dispersing deprotonable polymers in manufacturing processes, combining computer simulations with pilot-scale experiments to enhance efficiency in the bioeconomy.
View Article and Find Full Text PDF

About 90% of active pharmaceutical ingredients (APIs) in the oral drug delivery system pipeline have poor aqueous solubility and low bioavailability. To address this problem, amorphous solid dispersions (ASDs) embed hydrophobic APIs within polymer excipients to prevent drug crystallization, improve solubility, and increase bioavailability. There are a limited number of commercial polymer excipients, and the structure-function relationships which lead to successful ASD formulations are not well-documented.

View Article and Find Full Text PDF