The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines, and smart dust, has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with microfabrication techniques, creating substantial challenges to realizing microscale energy systems. Here, we photolithographically patterned a microscale zinc/platinum/SU-8 system to generate the highest energy density microbattery at the picoliter (10 liter) scale.
View Article and Find Full Text PDFResearch has established the influence of short-term physical practice for enhancing action prediction in right-handed (RH) individuals. In addition to benefits of physical practice for these later assessed perceptual-cognitive skills, effector-specific interference has been shown through action-incongruent secondary tasks (motor interference tasks). Here we investigated this experience-driven facilitation of action predictions and effector-specific interference in left-handed (LH) novices, before and after practicing a dart throwing task.
View Article and Find Full Text PDFBecause of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum.
View Article and Find Full Text PDFAims: Atrial fibrillation (AF) costs are expected to be substantial, but cost comparisons with the general population are scarce. Using data from the prospective Swiss-AF cohort study and population-based controls, we estimated the impact of AF on direct healthcare costs from the Swiss statutory health insurance perspective.
Methods: Swiss-AF patients, enrolled from 2014 to 2017, had documented, prevalent AF.
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.