Publications by authors named "M E Jalil"

The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.

View Article and Find Full Text PDF

Najas gracillima, a marine seaweed found in North America and Asia, was investigated for its neuropharmacological and antidiarrheal properties. Acetone extracts of N. gracillima (ANG) were analyzed using both in vivo and in silico methods.

View Article and Find Full Text PDF

As a future fuel, obtaining hydrogen from water could be a game changer for the renewable energy sector, because it has the potential to be used as an alternative to fossil fuels. The current project has been designed to develop catalysts that can produce hydrogen from water on irradiation by sunlight. For this purpose, CdS, Cu/CdS, Pd/CdS, and Cu-Pd/CdS catalysts were successfully synthesised and utilized for hydrogen generation.

View Article and Find Full Text PDF

The textile industry is undergoing a transformative shift towards sustainability, driven by mounting environmental concerns and consumer demand for eco-friendly products. This review article explores the use of mordants in textile dyeing processes, encompassing both traditional metal mordants and emerging bio-mordants. Metal mordants, commonly used in textile dyeing, present environmental challenges due to their toxic nature.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS), a notable two-dimensional (2D) material, has attracted considerable interest for its potential applications in gas sensing, despite its typically insulating characteristics, which have limited its practical use. In this study, we present the use of mixed phase MoS (1T@2H-MoS) to overcome sensing limitations of MoS material by enhancing its conductivity and demonstrating its high-performance characteristics for sensing ammonia (NH) at room temperature (20 °C). The 1T@2H-MoS was synthesized a hydrothermal process, and the coexistence of two different phases (the 1T and 2H phases) was confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy.

View Article and Find Full Text PDF