Publications by authors named "M E Hegg"

Purpose: This study examined the effect of EO diffusion in the clinical setting on nurses' mood.

Design: Interventional interrupted time series study with two data collection points: prior to, and in the second week of diffusion.

Methods: Self-report questionnaires measured the impact of EO diffusion on nurses' stress, depression, anxiety, distress, and mood.

View Article and Find Full Text PDF

Despite advances in diagnostic technology, significant gaps remain in access to malaria diagnosis. Accurate diagnosis and misdiagnosis leads to unnecessary waste of resources, poor disease management, and contributes to a cycle of poverty in low-resourced communities. Despite much effort and investment, few new technologies have reached the field in the last 30 years aside from lateral flow assays.

View Article and Find Full Text PDF

Background: The haemozoin crystal continues to be investigated extensively for its potential as a biomarker for malaria diagnostics. In order for haemozoin to be a valuable biomarker, it must be present in detectable quantities in the peripheral blood and distinguishable from false positives. Here, dark-field microscopy coupled with sophisticated image processing algorithms is used to characterize the abundance of detectable haemozoin within infected erythrocytes from field samples in order to determine the window of detection in peripheral blood.

View Article and Find Full Text PDF

The scattering characteristics of the malaria byproduct hemozoin, including its scattering distribution and depolarization, are modeled using Discrete Dipole Approximation (DDA) and compared to those of healthy red blood cells. Scattering (or dark-field) spectroscopy and imaging are used to identify hemozoin in fresh rodent blood samples. A new detection method is proposed and demonstrated using dark-field in conjunction with cross-polarization imaging and spectroscopy.

View Article and Find Full Text PDF

Avalanche concentration, a rapid, long-range accumulation of particles around a laser spot in a liquid sample, is demonstrated and characterized for various nanoparticles (NPs). The effect is driven by a convective flow in the sample, caused by efficient heating of NPs with high absorption efficiencies. Several types of concentration behavior were observed and characterized.

View Article and Find Full Text PDF