Historically, humans have managed food systems to maximize productivity. This pursuit has drastically modified terrestrial and aquatic ecosystems globally by reducing species diversity and body size while creating very productive, yet homogenized, environments. Such changes alter the structure and function of ecosystems in ways that ultimately erode their stability.
View Article and Find Full Text PDFGlobal change is fundamentally altering flows of natural and anthropogenic subsidies across space and time. After a pointed call for research on subsidies in the 1990s, an industry of empirical work has documented the ubiquitous role subsidies play in ecosystem structure, stability, and function. Here, we argue that physical constraints (e.
View Article and Find Full Text PDFLocal and regional habitat conditions associated with agricultural activity can fundamentally alter aquatic ecosystems. Increased nutrient inputs, channelization and reduced riparian habitat both upstream and locally contribute to the degradation of stream ecosystems and their function. Here, we examine stream food webs in watersheds that feed into Lake Erie to determine the effects of agricultural land cover on major food web energy pathways and trophic structure.
View Article and Find Full Text PDFBuilding the capacity of efficiently determining the provenance of food products represents a crucial step towards the sustainability of the global food system. Despite species specific empirical examples of multi-tracer approaches to provenance, the precise benefit and efficacy of multi-tracers remains poorly understood. Here we show why, and when, data fusion of bio-tracers is an extremely powerful technique for geographical provenance discrimination.
View Article and Find Full Text PDF