We constrain the parameters of neutron superfluidity in the cores of neutron stars making use of the recently proposed effect of resonance stabilization of r modes. To this end, we, for the first time, calculate the finite-temperature r-mode spectra for realistic models of rotating superfluid neutron stars, accounting for both muons and neutron-proton entrainment in their interiors. We find that the ordinary (normal) r mode exhibits avoided crossings with superfluid r modes at certain stellar temperatures and spin frequencies.
View Article and Find Full Text PDFWe study the equation of state (EOS) of an accreting neutron star crust. Usually, such an EOS is obtained by assuming (implicitly) that the free (unbound) neutrons and nuclei in the inner crust move together. We argue that this assumption violates the condition μ_{n}^{∞}=const, required for hydrostatic (and diffusion) equilibrium of unbound neutrons (μ_{n}^{∞} is the redshifted neutron chemical potential).
View Article and Find Full Text PDFWe consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures.
View Article and Find Full Text PDF