There is a clinical need for pragmatic approaches to measure integrated hemostatic reactions in whole blood rapidly, using small volumes of blood. The authors have applied T2 magnetic resonance (T2MR) to assess coagulation reactions based on partitioning of red blood cells and proteins that occurs during fibrin formation and platelet-mediated clot contraction. T2MR is amenable to measuring clotting times, individual coagulation factors, and platelet function.
View Article and Find Full Text PDFUrokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester).
View Article and Find Full Text PDFPurpose: Experimental tissue transplant studies reveal that lens development is directed by a series of early and late inductive interactions. These interactions impart a growing lens-forming bias within competent presumptive lens ectoderm that leads to specification and the commitment to lens fate. Relatively few genes are known which control these events.
View Article and Find Full Text PDFThe urokinase plasminogen activator receptor (uPAR) is a multifunctional, GPI-linked receptor that modulates cell adhesion/migration and fibrinolysis. We mapped the interaction sites between soluble uPAR (suPAR) and high molecular mass kininogen (HK). Binding of biotin-HK to suPAR was inhibited by HK, 56HKa, and 46HKa with an IC50 of 60, 110, and 8 nm, respectively.
View Article and Find Full Text PDFFew directed searches have been undertaken to identify the genes involved in vertebrate lens formation. In the frog Xenopus, the larval cornea can undergo a process of transdifferentiation to form a new lens once the original lens is removed. Based on preliminary evidence, we have shown that this process shares many elements of a common molecular/genetic pathway to that involved in embryonic lens development.
View Article and Find Full Text PDF