We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch using quantum Langevin equations in a scattering approach and compute the photon reflection and transmission probabilities. For parameters corresponding to up-to-date experimental devices we predict successful operation of the router with probabilities above 94%.
View Article and Find Full Text PDFLung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis.
View Article and Find Full Text PDFCollagen deposition is a key process during idiopathic pulmonary fibrosis; however, little is known about the dynamics of collagen formation during disease development. Tissue samples of early stages of human disease are not readily available and it is difficult to identify changes in collagen content, since standard collagen analyses do not distinguish between 'old' and 'new' collagen. Therefore, the current study aimed to (i) investigate the dynamics of new collagen formation in mice using bleomycin-induced lung fibrosis in which newly synthesized collagen was labeled with deuterated water and (ii) use this information to identify genes and processes correlated to new collagen formation.
View Article and Find Full Text PDFFibrosis underlies the pathogenesis of numerous diseases and leads to severe damage of vital body organs and, frequently, to death. Better understanding of the mechanisms resulting in fibrosis is essential for developing appropriate treatment solutions and is therefore of upmost importance. Recent evidence suggests a significant antifibrotic potential of an integral membrane protein, caveolin-1.
View Article and Find Full Text PDFSemiconductor devices have been scaled to the point that transport can be dominated by only a single dopant atom. As a result, in a Si fin-type field effect transistor Kondo physics can govern transport when one electron is bound to the single dopant. Orbital (valley) degrees of freedom, apart from the standard spin, strongly modify the Kondo effect in such systems.
View Article and Find Full Text PDF