As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years.
View Article and Find Full Text PDFSome thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses.
View Article and Find Full Text PDFMineral transformations by two hyperthermophilic Fe(III)-reducing crenarchaea, and , were examined using synthetic nanophase ferrihydrite, lepidocrocite, and akaganeite separately as terminal electron acceptors and compared with abiotic mineral transformations under similar conditions. Spectral analyses using visible-near-infrared, Fourier-transform infrared attenuated total reflectance (FTIR-ATR), Raman, and Mössbauer spectroscopies were complementary and revealed formation of various biomineral assemblages distinguishable from abiotic phases. The most extensive biogenic mineral transformation occurred with ferrihydrite, which formed primarily magnetite with spectral features similar to biomagnetite relative to a synthetic magnetite standard.
View Article and Find Full Text PDFIn situ information on the surface composition of Venus is based on measurements of a small number of landing sites. In the laboratory, we measured the emissivity of a range of igneous rocks at temperatures up to 480°C. We show that high-temperature laboratory spectra of basalts are consistent with the only existing multispectral data from the surface of Venus obtained by the photometers on the Venera 9 and 10 landers.
View Article and Find Full Text PDFIn California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential carcinogen to date. Notwithstanding, outcrops hosting fibrous glaucophane are being excavated today in California for building/construction purposes (see for example the Calaveras Dam Replacement Project - CDRP).
View Article and Find Full Text PDF