Developing biocompatible, magnetically controlled polymers is a multifunctional solution to many surgical complications. By combining nanoparticle technology with the latest advancements in polymer materials science, we created a multicomponent hybrid system comprised of a robust native spider silk-based matrix; a MnZnFeO nanoparticles coating to provide a controlled thermal trigger for drug release; and liposomes, which act as drug carriers. Fluorescent microscope images show that the dye loaded into the liposomes is released when the system is exposed to an alternating magnetic field due to heating of ferromagnetic nanoparticles, which had a low Curie temperature (40-46°С).
View Article and Find Full Text PDFHyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood.
View Article and Find Full Text PDFTreatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches.
View Article and Find Full Text PDF