We report a single-photon Mach-Zehnder interferometer stabilized to a phase precision of 0.05 degrees over 15 hours. To lock the phase, we employ an auxiliary reference light at a different wavelength than the quantum signal.
View Article and Find Full Text PDFWe have studied the critical properties of the three-dimensional random anisotropy Heisenberg model by means of numerical simulations using the Parallel Tempering method. We have simulated the model with two different disorder distributions, cubic and isotropic ones, with two different anisotropy strengths for each disorder class. For the case of the anisotropic disorder, we have found evidence of universality by finding critical exponents and universal dimensionless ratios independent of the strength of the disorder.
View Article and Find Full Text PDFAnalytical models for capacitive energy storage in nanopores attract growing interest as they can provide in-depth analytical insights into charging mechanisms. So far, such approaches have been limited to models with nearest-neighbor interactions. This assumption is seemingly justified due to a strong screening of inter-ionic interactions in narrow conducting pores.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2021
Mapping the theory of charging supercapacitors with nanostructured electrodes on known lattice models of statistical physics is an interesting task, aimed at revealing generic features of capacitive energy storage in such systems. The main advantage of this approach is the possibility to obtain analytical solutions that allow new physical insights to be more easily developed. But how general the predictions of such theories could be? How sensitive are they to the choice of the lattice? Herein, we address these questions in relation to our previous description of such systems using the Bethe-lattice approach and Monte Carlo simulations.
View Article and Find Full Text PDF