α-ketoglutarate (AKG) is a valuable dicarboxylic acid with multiple applications in the food, pharmaceutical, and chemical industries. Its chemical synthesis is associated with toxic by-products, low specificity, and high energy input. To create a more environmentally friendly and sustainable alternative, a microbial production process for AKG was developed.
View Article and Find Full Text PDFWe report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2023
A wide range of dark matter candidates have been proposed and are actively being searched for in a large number of experiments, both at high (TeV) and low (sub meV) energies. One dark matter candidate, a deeply bound sexaquark, , with mass GeV (having the same quark content as the hypothesized H-dibaryon, but long lived) is particularly difficult to explore experimentally. In this paper, we propose a scheme in which such a state could be produced at rest through the formation of -He antiprotonic atoms and their annihilation into + , identified both through the unique tag of a final state, as well as through full kinematic reconstruction of the final state recoiling against it.
View Article and Find Full Text PDFThe liver is a vital organ with numerous functions, including metabolic functions, detoxification, and the synthesis of secretory proteins. The increasing prevalence of liver diseases requires the development of effective treatments, models, and regenerative approaches. The field of liver tissue engineering represents a significant advance in overcoming these challenges.
View Article and Find Full Text PDFTissue Eng Part C Methods
September 2020
tissue-engineered cell culture models are an essential instrument to investigate physiological and pathophysiological wound healing mechanisms and to evaluate new beneficial wound dressing materials and therapeutics to identify possible drug targets and to improve regeneration processes in nonhealing and chronic wounds. In this study, the authors established an model for cutaneous wound healing, based on primary human dermal microvascular endothelial cells (HDMEC) and primary human dermal fibroblasts (HDF) to study wound healing-associated processes. Co-cultivation of HDMEC and HDF results in the formation of microvessel-like structures in long-term co-cultures.
View Article and Find Full Text PDF