Publications by authors named "M Doppegieter"

Introduction: Psoriasis is characterized by an increase in the proliferation of keratinocytes and nerve fiber activity, contributing to the typical skin lesions. Pulsed Dye Laser (PDL) treatment is effective for the treatment of psoriatic lesions but its mechanism remains unclear. One hypothesis is that PDL causes thermal damage by the diffusion of heat to neighboring structures in lesional skin.

View Article and Find Full Text PDF

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues.

View Article and Find Full Text PDF

Objectives: Knowledge of the physical effects of pulsed dye laser (PDL) treatment of psoriatic lesions is essential in unraveling the remedial mechanisms of this treatment and hence also in maximizing in its disease-modifying potential. Therefore, the main objective of this study was to provide estimates of these physical effects (for laser wavelengths of 585 and 595 nm), with the aim of identifying pathogenic processes that may be affected by these conditions.

Methods: We modeled the laser light propagation and subsequent photothermal heating by numerically solving the transient diffusion and heat equations simultaneously.

View Article and Find Full Text PDF

Pulsed dye laser (PDL) therapy can be effective in treating psoriasis, with a long duration of remission. Although PDL therapy, albeit on a modest scale, is being used for decades now, the underlying mechanisms responsible for the long-term remission of psoriasis remain poorly understood. The selective and rapid absorption of energy by the blood causes heating of the vascular wall and surrounding structures, like perivascular nerves.

View Article and Find Full Text PDF

Bacterial infections are one of the main health concerns humanity faces today and bacterial resistances and protection mechanisms are set to aggravate the issue in the coming years. An increasing number of bacterial strains evades antibiotic treatment by hiding inside cells. Conventional antimicrobial agents are unable to penetrate or be retained in the infected mammalian cells.

View Article and Find Full Text PDF