High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is characterized by an extremely variable clinical course. Although several parameters have been shown to be associated with clinical outcomes in patients with CLL, there remains substantial intragroup clinical heterogeneity in otherwise molecularly and staging homogeneous CLL subgroups. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course and that higher CAT expression is associated with the presence of the rs1001179 single nucleotide polymorphism (SNP) T allele in the CAT promoter.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDFThe present work shows that the exposure of mesothelial cells to simulated microgravity changes their cytoskeleton and adhesion proteins, leading to a cell switch from normal towards tumoral cells. Immunohistochemical and molecular data were obtained from both MeT-5A exposed to simulated microgravity and BR95 mesothelioma cell lines. Simulated microgravity was found to affect the expression of actin, vinculin, and connexin-43, altering their quantitative and spatial distribution pattern inside the cell.
View Article and Find Full Text PDF