Dendroprovenancing provides critical information regarding the origin of wood, allowing further insights into economic exploitation strategies and source regions of timber products. Traditionally, dendroprovenancing relies on pattern-matching of tree rings, but its spatial resolution is limited by the geographical coverage of species-specific chronologies available for crossdating and, in the case of short-distance trades, by scarce environmental variability. Here, we present an approach to provenance timber with high spatial resolution from forested areas that have been exploited intensively throughout history, with the aim to understand the sustainability of the various woodland management practices used to supply timber products.
View Article and Find Full Text PDFLong-term records of tree-ring width (TRW), latewood maximum density (MXD) and blue intensity (BI) measurements on conifers have been largely used to develop high-resolution temperature reconstructions in cool temperate forests. However, the potential of latewood blue intensity (LWBI), less commonly used earlywood blue intensity (EWBI), and delta (difference between EWBI and LWBI, dBI) blue intensity in Mediterranean tree species is still unexplored. Here we developed BI chronologies in moist-elevation limits of the most southwestern European distribution of Pinus nigra subsp.
View Article and Find Full Text PDFOcean-going ships were key to rising maritime economies of the Early Modern period, and understanding how they were built is critical to grasp the challenges faced by shipwrights and merchant seafarers. Shipwreck timbers hold material evidence of the dynamic interplay of wood supplies, craftmanship, and evolving ship designs that helped shape the Early Modern world. Here we present the results of dendroarchaeological research carried out on Batavia's wreck timbers, currently on display at the Western Australian Shipwrecks Museum in Fremantle.
View Article and Find Full Text PDFDating the wood from historical art objects is a crucial step to ascertain their production time, and support or refute attribution to an artist or a workshop. Dendrochronology is commonly used for this purpose but requires access to the tree-ring pattern in the wood, which can be hindered by preparatory layers, polychromy, wax, or integrated frames. Here we implemented non-invasive dendrochronology based on X-ray computed tomography (CT) to examine a painting on panel attributed to Rubens' studio and its presumed dating around 1636 CE.
View Article and Find Full Text PDFDendrochronology is an essential tool to determine the date and provenance of wood from historical art objects. As standard methods to access the tree rings are invasive, X-ray computed tomography (CT) has been proposed for non-invasive dendrochronological investigation. While traditional CT can provide clear images of the inner structure of wooden objects, it requires their full rotation, imposing strong limitations on the size of the object.
View Article and Find Full Text PDF