Publications by authors named "M Dolores Barrachina"

Unlabelled: Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue.

View Article and Find Full Text PDF

Background: Vitamin D, through the activation of its receptor (VDR), plays an immunomodulatory role in the gastrointestinal tract. Single-nucleotide polymorphisms (SNPs) in the VDR gene have been associated with Crohn's disease (CD) risk, and patients carrying the polymorphism in this gene run a higher risk of developing a penetrating behavior.

Aims: We analyzed the association of , , , and SNPs in the gene with the clinical characteristics of CD.

View Article and Find Full Text PDF

Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD.

View Article and Find Full Text PDF

Lipids contribute to hematopoiesis and membrane properties and dynamics; however, little is known about the role of lipids in megakaryopoiesis. Here we show that megakaryocyte progenitors, megakaryocytes and platelets present a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake as well as de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production.

View Article and Find Full Text PDF

Background: Platelets are essential for hemostasis and thrombosis and play vital roles during metastatic cancer progression and infection. Hallmarks of platelet function are activation, cytoskeletal rearrangements, and the degranulation of their cellular contents upon stimulation. While α-granules and dense granules are the most studied platelet secretory granules, the dense tubular system (DTS) also functions as a secretory system for vascular thiol isomerases.

View Article and Find Full Text PDF