Human African trypanosomiasis (HAT) is a parasitic disease affecting sub-Saharan Africa. The parasites are able to traverse the blood-brain barrier (BBB), which marks stage 2 (S2) of the disease. Delivery of anti-parasitic drugs across the BBB is key to treating S2 effectively and the difficulty in achieving this goal is likely to be a reason why some drugs require highly intensive treatment regimes to be effective.
View Article and Find Full Text PDFNifurtimox, an antiparasitic drug, is used to treat American trypanosomiasis (Chagas disease) and has shown promise in treating central nervous system (CNS)-stage human African trypanosomiasis (HAT; sleeping sickness). In combination with other antiparasitic drugs, the efficacy of nifurtimox against HAT improves, although why this happens is unclear. Studying how nifurtimox crosses the blood-brain barrier (BBB) and reaches the CNS may clarify this issue and is the focus of this study.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain, neuronal cell loss and cognitive decline. We show here that retinoic acid receptor (RAR)α signalling in vitro can prevent both intracellular and extracellular Aβ accumulation. RARα signalling increases the expression of a disintegrin and metalloprotease 10, an α-secretase that processes the amyloid precursor protein into the non-amyloidic pathway, thus reducing Aβ production.
View Article and Find Full Text PDFDuring the first stage of human African trypanosomiasis (HAT), Trypanosoma brucei gambiense is found mainly in the blood, and pentamidine treatment is used. Pentamidine is predominantly ineffective once the parasites have invaded the central nervous system (CNS). This lack of efficacy is thought to be due to the inability of pentamidine to cross the blood-brain barrier, although this has never been explored directly.
View Article and Find Full Text PDF