Publications by authors named "M Doengi"

Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.

View Article and Find Full Text PDF

Selenoproteins are a small family of proteins containing the trace element selenium in form of the rare amino acid selenocysteine (Sec), which is decoded by the UGA codon. In humans, a number of pathogenic variants in genes encoding distinct selenoproteins or selenoprotein biosynthesis factors have been identified. Pathogenic variants in selenocysteine synthase (SEPSECS), which catalyzes the last step in Sec-tRNA biosynthesis, were reported in children suffering from progressive cerebello-cerebral atrophy.

View Article and Find Full Text PDF

Neurofibromatosis type 2 (NF2) patients are prone to develop glial-derived tumors in the peripheral and central nervous system (CNS). The Nf2 gene product -Merlin is not only expressed in glia, but also in neurons of the CNS, where its function still remains elusive. Here, we show that cerebellar Purkinje cells (PCs) of isoform-specific Merlin-deficient mice were innervated by smaller vGluT2-positive clusters at presynaptic terminals than those of wild-type mice.

View Article and Find Full Text PDF

Rationale: New strategies in the field of cardiac regeneration are directed at identifying proliferation-inducing substances to induce regrowth of myocardium. Current screening assays utilize neonatal cardiomyocytes and markers for cytokinesis, such as Aurora B-kinase. However, detection of cardiomyocyte division is complicated because of cell cycle variants, in particular, binucleation.

View Article and Find Full Text PDF

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability.

View Article and Find Full Text PDF