In this paper, we report our study on high-performance III-nitride nanowire light-emitting diodes (LEDs) on copper (Cu) substrates via the substrate-transfer process. Nanowire LED structures were first grown on silicon-on-insulator (SOI) substrates by molecular beam epitaxy. Subsequently, the SOI substrate was removed by combining dry- and wet-etching processes.
View Article and Find Full Text PDFMulticolor single InGaN/GaN dot-in-nanowire light emitting diodes (LEDs) were fabricated on the same substrate using selective area epitaxy. It is observed that the structural and optical properties of InGaN/GaN quantum dots depend critically on nanowire diameters. Photoluminescence emission of single InGaN/GaN dot-in-nanowire structures exhibits a consistent blueshift with increasing nanowire diameter.
View Article and Find Full Text PDFThe current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop.
View Article and Find Full Text PDFTo date, it has remained challenging to realize electrically injected light sources in the vacuum ultraviolet wavelength range (∼200 nm or shorter), which are important for a broad range of applications, including sensing, surface treatment, and photochemical analysis. In this Letter, we have demonstrated such a light source with molecular beam epitaxially grown aluminum nitride (AlN) nanowires on low cost, large area Si substrate. Detailed angle dependent electroluminescence studies suggest that, albeit the light is TM polarized, the dominant light emission direction is from the nanowire top surface, that is, along the c axis, due to the strong light scattering effect.
View Article and Find Full Text PDFThe discovery of direct bandgap semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) has opened a new era in flexible optoelectronic devices. Critical to this development is the realization of a semiconductor laser using the emerging 2D TMDCs. Here, by embedding 2D MoS2 at the interface between a free-standing microdisk and microsphere, we have demonstrated, for the first time, room-temperature lasing from 2D TMDCs.
View Article and Find Full Text PDF