Scope: Here we tested the hypothesis that ascorbic acid (AA) is a signaling molecule acting on stem cells via the differentiation of mesoderm derivatives, including myocytes, osteocytes, and adipocytes.
Material And Methods: Investigations used a murine embryonic stem cell line CGR8 able to differentiate into different cell types and treated or not with ascorbic acid. Differentiation was tracked mainly through cellular anatomy (including presence of beating cardiomyocytes) and expression of specific markers.
The tumor suppressor proteins p15(INK4B), p16(INK4A), and p14(ARF), encoded by the INK4AB/ARF locus, are crucial regulators of cellular senescence. The locus is epigenetically silenced by the repressive Polycomb complexes in growing cells but is activated in response to oncogenic stress. Here we show that the mitogen- and stress-activated kinase (MSK1) is up-regulated after RAF1 oncogenic stress and that the phosphorylated (activated) form of MSK1 is significantly increased in the nucleus and recruited to the INK4AB/ARF locus.
View Article and Find Full Text PDFDespite correlations between histone methyltransferase (HMT) activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4) methyltransferase critical for maintaining hematopoietic stem cells (HSCs). Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein.
View Article and Find Full Text PDFIn this issue of Blood, Li et al report an unexpected but clinically relevant finding. They demonstrate that the mixed lineage leukemia (MLL1) gene acts independently from menin (Men1) in the hematopoietic system.
View Article and Find Full Text PDFNanog levels in pluripotent stem cells are heterogeneous and this is thought to reflect two different and interchangeable cell states, respectively poised to self-renew (Nanog-high subpopulation) or to differentiate (Nanog-low subpopulation). However, little is known about the mechanisms responsible for this pattern of Nanog expression. Here, we have examined the impact of the histone methyltransferase Ezh2 on pluripotent stem cells and on Nanog expression.
View Article and Find Full Text PDF