Publications by authors named "M Dinguizli"

To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing.

View Article and Find Full Text PDF

Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio.

View Article and Find Full Text PDF

The incidence of malignant melanoma is increasing at an alarming rate. As the clinical outcome of the disease strongly depends on the localization of the lesion, early detection at the initial stages of development is critical. Here, we suggest spatial characterization of melanoma based on the presence of endogenous stable free radicals in melanin pigments.

View Article and Find Full Text PDF

Electron Paramagnetic Resonance and fluorescence spectroscopy have been used to determine the micropolarity and microviscosity of self-assembling systems based on mmePEG-p(CL-co-TMC) having different PEG chain lengths and different CL/TMC ratios and PEG/MOG/SA (45/5/50) polymers with different PEG chain lengths. Four reporter probes have been used: two spin probes, 16-doxyl stearic acid and 5-doxylstearic acid, and two fluorescent probes, pyrene and 1,3-bis(1-pyrenyl) propane (P3P). We found that the micelles based on mmePEG-p(CL-co-TMC) polymers are of a biphasic nature.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) oximetry is a powerful technology that allows the monitoring of oxygenation in tissues. The measurement of tissue oxygenation can be achieved using lithium phthalocyanine (LiPc) crystals as oxygen reporters. In order to have biocompatibility for the sensing system and to assure long-term stability in the responsiveness of the system, we developed films of Teflon AF 2400 with embedded LiPc crystals.

View Article and Find Full Text PDF