The ascorbate-glutathione (ASC-GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients.
View Article and Find Full Text PDFAmmonium (NH )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole.
View Article and Find Full Text PDFDuring its development, the leaf undergoes profound metabolic changes to ensure, among other things, its growth. The subcellular metabolome of tomato leaves was studied at four stages of leaf development, with a particular emphasis on the composition of the vacuole, a major actor of cell growth. For this, leaves were collected at different positions of the plant, corresponding to different developmental stages.
View Article and Find Full Text PDFNitrate (NO3-) and ammonium (NH4+) are the main inorganic nitrogen sources available to plants. However, exclusive ammonium nutrition may lead to stress characterized by growth inhibition, generally associated with a profound metabolic reprogramming. In this work, we investigated how metabolism adapts according to leaf position in the vertical axis of tomato (Solanum lycopersicum cv.
View Article and Find Full Text PDFFront Plant Sci
May 2018