Microphysiological systems (MPS) are complex in vitro tools that incorporate cells derived from various healthy or disease-state human or animal tissues and organs. While MPS have limitations, including a lack of globally harmonized guidelines for standardization, they have already proven impactful in certain areas of drug development. Further research and regulatory acceptance of MPS will contribute to making them even more effective tools in the future.
View Article and Find Full Text PDFThis collaborative work by over 180 researchers from 40+ countries addresses the challenges posed by "phantom agents"-putative pathogenic agents named in literature without supporting data on their existence. Those agents remain on regulatory lists, creating barriers in trade and plant certification. Historically identified based solely on symptoms, these agents lack isolates or sequence data, making reliable detection or risk assessment impossible.
View Article and Find Full Text PDFBioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.
View Article and Find Full Text PDFBackground: Mobile phone SMS text message reminders have shown moderate effects in improving participation rates in ongoing colorectal cancer screening programs.
Objective: This study aimed to assess the effectiveness of SMS text messages as a replacement for routine postal reminders in a fecal immunochemical test-based colorectal cancer screening program in Catalonia, Spain.
Methods: We conducted a randomized controlled trial among individuals aged 50 to 69 years who were invited to screening but had not completed their fecal immunochemical test within 6 weeks.
The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.
View Article and Find Full Text PDF