Tailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.
View Article and Find Full Text PDFA permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve.
View Article and Find Full Text PDFThe circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts.
View Article and Find Full Text PDFIntroduction: Recent developments of noninvasive, high-resolution imaging techniques, such as reflectance confocal microscopy (RCM) and optical coherence tomography (OCT), have enhanced skin cancer detection and precise tumor excision particularly in highly aggressive and poorly defined basal cell carcinomas (BCCs).
Objectives: The aim of this pilot study is to assess the feasibility and reproducibility of a systematic clinical workflow combining noninvasive (RCM-OCT) and invasive fluorescence confocal microscopy (FCM) imaging modalities in pre- and intra-surgical evaluations of the lateral and deep margins of BCC.
Methods: Superficial incisions were made 2 mm beyond the clinical-dermoscopic BCC margins.