Phenol is a noteworthy pollutant, found in effluents of many industrial processes, like oil refining and drugs production, which can impair the treatment efficiency of bioreactors. This study evaluated the performance of phenol, COD, and nitrogen removal of an aerobic bench-scale Moving Bed Biofilm Reactor (MBBR) exposed to gradually increasing phenol content over 233 days. The reactor had Hydraulic Retention Time (HRT) set at 3 h and 40% filling degree (K1 media), and was fed with synthetic wastewater containing phenol (10, 20, 50, 100, 250 and 400 mg/L), glucose (400 mgCOD/L), and 40 mgN-NH/L.
View Article and Find Full Text PDFThis work highlights the performance of an ultrafiltration ceramic membrane as photocatalyst support and oxidant-catalyst/water contactor to promote sulfate radical advanced oxidation processes (SR-AOPs). Peroxydisulfate (PDS) activation mechanisms include photolysis (UVC irradiation) and chemical electron transfer (TiO-P25 photocatalysis). The photoreactor is composed of an outer quartz tube (the "window"-radiation entrance to the reactor) and an inner tubular ceramic ultrafiltration membrane, where the catalyst particles (TiO-P25) are immobilized on the membrane shell-side.
View Article and Find Full Text PDFThis work aims to integrate several hydrogen peroxide (HO) activation mechanisms, photolysis (UVC irradiation), chemical electron transfer (TiO-P25 photocatalysis), and reaction with TiO-P25 in dark conditions, for reactive oxygen species (ROS) generation towards the removal of contaminants of emerging concern (CECs), in a single unit operated in continuous-flow mode. An HO stock solution is fed by the lumen side of a tubular ceramic membrane, delivering the oxidant to the (i) catalyst immobilized in the membrane shell-side and (ii) annular reaction zone (ARZ, space between membrane shell-side and outer quartz tube) where CECs contaminated water flows with a helix trajectory, being activated by UV light provided by four lamps placed symmetrically around the reactor. First, the effect of several parameters in the removal of a CEC target molecule, amoxicillin (AMX), was evaluated using a synthetic solution ([AMX] = 2.
View Article and Find Full Text PDFIn this study, the biodegradation of endocrine-disrupting chemicals (EDCs) (namely the natural and synthetic estrogens 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), respectively) was assessed in an aerobic granular sludge (AGS) sequencing batch reactor (SBR) treating simulated domestic sewage. To better understand the fate of these compounds, their concentrations were determined in both liquid and solid (biomass) samples. Throughout the operation of the reactor, subjected to alternating anaerobic and aerated conditions, the removal of the hormones, both present in the influent at a concentration of 20 μg L, amounted to 99% (for E2) and 93% (for EE2), with the latter showing higher resistance to biodegradation.
View Article and Find Full Text PDFContaminants of emerging concern (CECs) are released daily into surface water, and their recalcitrant properties often require tertiary treatment. Electrochemical oxidation (EO) is often used as an alternative way to eliminate these compounds from water, although the literature barely addresses the neurotoxic effects of residual by-products. Therefore, this study investigated the performance of EO in the removal of five CECs (alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine) and performed neurotoxicity evaluations of residual EO by-products in Wistar rat brain hippocampal slices.
View Article and Find Full Text PDF