Publications by authors named "M Desban"

The N-methyl-D-aspartate-evoked release of [3H]acetylcholine previously formed from [3H]choline was estimated in striosome- (identified by [3H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-D-aspartate (50 microM) stimulated the release of [3H]acetylcholine in both striatal compartments.

View Article and Find Full Text PDF

The effects of septide (a short substance P C-terminal analogue) and of the neurokinin-1 receptor agonist [Pro9]substance P on the N-methyl-D-aspartate (50 microM)-evoked release of [3H]dopamine (continuously synthesized from [3H]tyrosine) were investigated in the absence or the presence of the selective neurokinin-1 receptor antagonist RP 67580 in selected striosome- and matrix-enriched areas of the rat striatum. Experiments were performed in vitro using a microsuperfusion procedure described previously. At a concentration of 0.

View Article and Find Full Text PDF

The topographical organization of the striatonigral projection was investigated in the cat by comparing the localization and the intensity of labelling of retrogradely labelled cells in the caudate nucleus following one or multiple injections of horseradish peroxidase-wheat germ agglutinin into the center or along the rostrocaudal axis of the substantia nigra pars reticulata. Second, the localizations of retrogradely labelled striatopallidal neurons and of clusters of aggregated striatonigral neurons (as outlined by the transport of 14C-material) were compared in cats that received four horseradish peroxidase-wheat germ agglutinin injections into the internal segment of the globus pallidus and three nigral injections of 14C-amino acids into the substantia nigra pars reticulata. Two types of striatonigral neurons located predominantly within the matrix compartment were identified: poorly collateralized aggregated cells distributed in clusters and more numerous collateralized cells distributed outside the clusters.

View Article and Find Full Text PDF

The effects of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA; 10(-3) M), N-methyl-D-aspartate (10(-3) M, in the absence of magnesium or presence of AMPA) and carbachol (10(-3) M) on the release of preloaded [3H]gamma-aminobutyric acid ([3H]GABA) from microdiscs of tissue punched out from sagittal brain slices in striosome- or matrix-enriched areas of the rat striatum have been compared. Although AMPA stimulated similarly the release of [3H]GABA in both striatal compartments, the release of [3H]GABA evoked by either N-methyl-D-aspartate (in the presence of AMPA) or carbachol was more pronounced in matrix- than in striosome-enriched areas. AMPA- and N-methyl-D-aspartate- (in the absence of magnesium) evoked responses were reduced but not abolished in the presence of tetrodotoxin (10(-6) M) in both compartments while the carbachol-evoked release of [3H]GABA was decreased by tetrodotoxin only in the matrix.

View Article and Find Full Text PDF

Using a new superfusion procedure in vitro, we have previously reported that the NMDA-evoked release of newly synthesized 3H-dopamine (DA) was higher in matrix- than in striosome-enriched areas of the rat striatum. In addition, GABAergic medium-sized spiny neurons were shown to be indirectly involved in this regulation. Since dynorphin and GABA are colocalized in a population of medium-sized spiny neurons, the role of dynorphin-containing neurons in the NMDA-evoked release of 3H-DA has been investigated using the same superfusion procedure on rat striatal slices.

View Article and Find Full Text PDF