Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-β pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a mice.
View Article and Find Full Text PDFAims: Loss-of-function mutations in SCN5A, the gene encoding NaV1.5 channel, have been associated with inherited progressive cardiac conduction disease (PCCD). We have proposed that Scn5a heterozygous knock-out (Scn5a+/-) mice, which are characterized by ventricular fibrotic remodelling with ageing, represent a model for PCCD.
View Article and Find Full Text PDFAstrocytes interact with neurons to regulate network activity. Although the gap junction subunits connexin 30 and connexin 43 mediate the formation of extensive astroglial networks that cover large functional neuronal territories, their role in neuronal synchronization remains unknown. Using connexin 30- and connexin 43-deficient mice, we showed that astroglial networks promoted sustained population bursts in hippocampal slices by setting the basal active state of neurons.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2014
Zonula Occludens (ZO) proteins are ubiquitous scaffolding proteins providing the structural basis for the assembly of multiprotein complexes at the cytoplasmic surface of the plasma membrane and linking transmembrane proteins to the filamentous cytoskeleton. They belong to the large family of membrane-associated guanylate kinase (MAGUK)-like proteins comprising a number of subfamilies based on domain content and sequence similarity. ZO proteins were originally described to localize specifically to tight junctions, or Zonulae Occludentes, but this notion was rapidly reconsidered since ZO proteins were found to associate with adherens junctions as well as with gap junctions, particularly with connexin-made intercellular channels, and also with a few other membrane channels.
View Article and Find Full Text PDFCells of multicellular organisms need to communicate with each other and have evolved various mechanisms for this purpose, the most direct and quickest of which is through channels that directly connect the cytoplasms of adjacent cells. Such intercellular channels span the two plasma membranes and the intercellular space and result from the docking of two hemichannels. These channels are densely packed into plasma-membrane spatial microdomains termed "gap junctions" and allow cells to exchange ions and small molecules directly.
View Article and Find Full Text PDF