Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.
Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.
Purpose: To determine the expected range of NMR relaxation times (T and T) in the neonatal brain at 7 T.
Methods: Data were acquired in a total of 40 examinations on infants in natural sleep. The cohort included 34 unique subjects with postmenstrual age range between 33 and 52 weeks and contained a mix of healthy individuals and those with clinical concerns.
Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated landmark propagation pipeline using 3D motion-corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.
Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.
Cortical gyrification takes place predominantly during the second to third trimester, alongside other fundamental developmental processes, such as the development of white matter connections, lamination of the cortex and formation of neural circuits. The mechanistic biology that drives the formation cortical folding patterns remains an open question in neuroscience. In our previous work, we modelled the in utero diffusion signal to quantify the maturation of microstructure in transient fetal compartments, identifying patterns of change in diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester.
View Article and Find Full Text PDF