Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system.
View Article and Find Full Text PDFThe modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis.
View Article and Find Full Text PDFThe bacterial pathogen Bartonella henselae (Bh) is responsible for a broad range of clinical manifestations, including the formation of vascular tumours as the result of pathogen-triggered vasoproliferation. In vitro, the interaction of Bh with human umbilical vein endothelial cells (Huvec) involves (i) cytoskeletal rearrangements in conjunction with bacterial internalization, (ii) nuclear factor kappaB (NFkappaB)-dependent proinflammatory activation, (iii) the inhibition of apoptosis, and (iv) the modulation of angiogenic properties such as proliferation, migration, and tubular differentiation. To study the transcriptional signature of these pathogen-triggered changes of Huvec, we performed transcriptional profiling with Affymetrix U133 GeneChips.
View Article and Find Full Text PDFBartonella henselae is present in a wide range of wild and domestic feline hosts and causes cat-scratch disease and bacillary angiomatosis in humans. We have estimated here the gene content of Bartonella koehlerae, a novel species isolated from cats that was recently identified as an agent of human endocarditis. The investigation was accomplished by comparative genomic hybridization (CGH) to a microarray constructed from the sequenced 1.
View Article and Find Full Text PDFThe flagellar system of Helicobacter pylori, which comprises more than 40 mostly unclustered genes, is essential for colonization of the human stomach mucosa. In order to elucidate the complex transcriptional circuitry of flagellar biosynthesis in H. pylori and its link to other cell functions, mutants in regulatory genes governing flagellar biosynthesis (rpoN, flgR, flhA, flhF, HP0244) and whole-genome microarray technology were used in this study.
View Article and Find Full Text PDF