Publications by authors named "M Dardenne"

Activity of the immunoregulatory peptide thymulin reflects differences in zinc status. This study compared thymulin activity with four other zinc status measures in rats fed zinc at either 5 or 25 ppm. Rats fed the lower zinc showed the following results compared with rats with adequate zinc intake: serum thymulin activity 61% lower, serum zinc 31% lower, serum extracellular superoxide dismutase 18% lower, serum 5'-nucleotidase activity 26% lower, and liver metallothionein 28% lower.

View Article and Find Full Text PDF

NOD (non-obese diabetic) mice spontaneously develop type 1 diabetes following T cell-dependent destruction of pancreatic β cells. Several alterations are observed in the NOD thymus, including the presence of giant perivascular spaces (PVS) filled with single-positive (SP) CD4⁺ and CD8⁺ T cells that accumulate in the organ. These cells have a decreased expression of membrane CD49e (the α5 integrin chain of the fibronectin receptor VLA-5 (very late antigen-5).

View Article and Find Full Text PDF

Thymulin is a thymic peptide possessing anti-inflammatory effects. In order to manipulate thymulin expression in gene therapy studies, we built a bidirectional regulatable two-vector Tet-Off system and the corresponding control system. The experimental two-vector system, ETV, consists of a recombinant adenovector (RAd) harboring an expression cassette centered on a Tet-Off bidirectional promoter flanked by a synthetic gene for thymulin and the gene for humanized Green Fluorescent Protein (hGFP).

View Article and Find Full Text PDF

The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells.

View Article and Find Full Text PDF

Neuropilins and semaphorins are known as modulators of axon guidance, angiogenesis, and organogenesis in the developing nervous system, but have been recently evidenced as also playing a role in the immune system. Here we describe the expression and role of semaphorin 3F (SEMA3F) and its receptor neuropilin-2 (NRP2) in human T cell precursors. NRP2 and SEMA3F are expressed in the human thymus, in both lymphoid and non-lymphoid compartments.

View Article and Find Full Text PDF