Radioactive ^{129}Sb, which can be treated as a proton plus semimagic ^{128}Sn core within the particle-core coupling scheme, was studied by Coulomb excitation. Reduced electric quadrupole transition probabilities, B(E2), for the 2^{+}⊗πg_{7/2} multiplet members and candidate πd_{5/2} state were measured. The results indicate that the total electric quadrupole strength of ^{129}Sb is a factor of 1.
View Article and Find Full Text PDFRadioactive ^{136}Te has two valence protons and two valence neutrons outside of the ^{132}Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of ^{136}Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0_{1}^{+}→2_{1}^{+}), Q(2_{1}^{+}), and g(2_{1}^{+}). The results indicate that the first-excited state, 2_{1}^{+}, composed of the simple 2p⊕2n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested.
View Article and Find Full Text PDFA precise measurement of the g factor of the first-excited state in the self-conjugate (N=Z) nucleus (24)Mg is performed by a new time-differential recoil-in-vacuum method based on the hyperfine field of hydrogenlike ions. Theory predicts that the g factors of such states, in which protons and neutrons occupy the same orbits, should depart from 0.5 by a few percent due to configuration mixing and meson-exchange effects.
View Article and Find Full Text PDFFollowing Coulomb excitation of the radioactive ion beam (RIB) 132Te at HRIBF we report the first use of the recoil-in-vacuum (RIV) method to determine the g factor of the 2(+)(1) state: g(973.9 keV 2(+) 132Te) = (+)0.35(5).
View Article and Find Full Text PDF