Unlabelled: The gingival epithelium plays a key role in protecting the supporting structures of the teeth from bacteria and their products. In ex vivo experiments, we recently showed that the cytolethal distending toxin (Cdt) from the periodontal pathogen Aggregatibacter actinomycetemcomitans causes extensive damage to gingival tissue. Morphological changes included detachment of the keratinized outer layer, distention of spinous and basal cells in the oral epithelium, disruption of rete pegs, and apparent dissolution of cell junctions.
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol
February 2013
Objectives: Osteoradionecrosis (ORN) is common in the jaws after radiotherapy. We hypothesized that the mandible is more susceptible to ORN than the tibia, based on site disparity in hypoxic, hypocellular, and hypovascular tissue breakdown.
Study Design: Twelve rats received 50 Gy irradiation to mandible or tibia; 4 of the rats further received minor surgical trauma to the irradiated sites.
The cytolethal distending toxin (Cdt), produced by some clinically important Gram-negative bacterial species, is related to the family of AB-type toxins. Three heterologous proteins (CdtA, CdtB, and CdtC) and a genotoxin mode of action distinguish the Cdt from others in this toxin class. Crystal structures of several species-specific Cdts have provided a basis for predicting subunit interactions and functions.
View Article and Find Full Text PDFUnlabelled: The cytolethal distending toxin (Cdt), expressed by the periodontal pathogen Aggregatibacter actinomycetemcomitans, inhibits the proliferation of cultured epithelial cells by arresting the cell cycle. The gingival epithelium is an early line of defense against microbial assault. When damaged, bacteria collectively gain entry into underlying connective tissue where microbial products can affect infiltrating inflammatory cells, leading to the destruction of the attachment apparatus.
View Article and Find Full Text PDFUnlabelled: Resistance to treatment and the appearance of secondary tumors in head and neck squamous cell carcinomas (HNSCC) have been attributed to the presence of cells with stem-cell-like properties in the basal layer of the epithelium at the site of the lesion. In this study, we tested the hypothesis that these putative cancer stem cells (CSC) in HNSCC could be specifically targeted and inhibited. We found that 9 of 10 head and neck tumor biopsies contained a subpopulation of cells that expressed CD133, an unusual surface-exposed membrane-spanning glycoprotein associated with CSC.
View Article and Find Full Text PDF