In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated.
View Article and Find Full Text PDFWe performed a hierarchical ab initio benchmark study of the gas-phase radical addition reactions of X⋅+CH and X⋅+CH (X⋅ = CH⋅, NH⋅, OH⋅, SH⋅). The hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) were paired with a hierarchal series of Dunning basis sets with and without diffuse functions ((aug)-cc-pVDZ, (aug)-cc-pVTZ, (aug)-cc-pVQZ). The HF ground-state wavefunctions were transformed into quasi-restricted orbital (QRO) reference wavefunctions to address spin contamination.
View Article and Find Full Text PDFCorrection for 'Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance' by Pascal Vermeeren , , 2022, , 18028-18042, https://doi.org/10.1039/D2CP02234F.
View Article and Find Full Text PDFA series of macrocyclic ligands were considered for the chelation of Pb: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb and that the most suitable macrocyclic scaffold for Pb is 1,4,7,10-tetrazacyclododecane.
View Article and Find Full Text PDFSilver-111 is an attractive unconventional candidate for targeted cancer therapy as well as for single photon emission computed tomography and can be complemented by silver-103 for positron emission tomography noninvasive diagnostic procedures. However, the shortage of chelating agents capable of forming stable complexes tethered to tumor-seeking vectors has hindered their application so far. In this study, a comparative investigation of a series of sulfur-containing structural homologues, namely, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetraazacyclotetradecane (TE4S) was conducted to appraise the influence of different polyazamacrocyclic backbones on Ag complexation.
View Article and Find Full Text PDF