We report the surface-assisted synthesis of a non-planar cyclophenylene derivative containing four meta- and two para- connected phenylene moieties on Au(111), via hierarchical Ullmann coupling of a 1,10-dibrominated angular [3]phenylene and subsequent C-C bond cleavage at the four-membered rings. Scanning tunneling microscopy and spectroscopy (STM/STS) were used for the characterization of its chemical structure and electronic properties. Density functional theory (DFT) calculations support the experimental observations.
View Article and Find Full Text PDFLight/dark (LD) cycles are responsible for oscillations in gene expression, which modulate several aspects of plant physiology. Those oscillations can persist under constant conditions due to regulation by the circadian oscillator. The response of the transcriptome to light regimes is dynamic and allows plants to adapt rapidly to changing environmental conditions.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2025
Infertility in hyperprolactinemic females is attributed to the dysregulation of GnRH release, subsequently affecting gonadotropin levels, and ultimately leading to anovulation. However, in addition to the hypothalamus, prolactin receptor (PRLR) is expressed in ovaries as well, suggesting potential local effects of PRL in cases of hyperprolactinemia. We have developed an experimental model of sulpiride (SPD)-induced hyperprolactinemia using a wild rodent, the plains vizcacha, and studied the implications of pharmacological PRL levels on folliculogenesis and steroid production.
View Article and Find Full Text PDFThe plains vizcacha is a rodent that shows reactivation of the hypothalamic-pituitary-ovary (HPO) axis activity at mid-gestation. This process is enabled by the secretion of hypothalamic gonadotropin-releasing hormone (GnRH) at mid-gestation, followed by follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. However, a decrease in the pituitary GnRH receptor (GnRHR) expression is concomitantly determined.
View Article and Find Full Text PDFJasmonates (JAs) are important phytohormones that regulate plant tolerance to biotic and abiotic stresses, and developmental processes. Distinct JAs in different plant lineages activate a conserved signaling pathway that mediates these responses: dinor-12-oxo-phytodienoic acid (dn-OPDA) isomers in bryophytes and lycophytes, and JA-Ile in most vascular plants. In many cases, the final responses triggered by these phytohormones depend on the accumulation of specialized metabolites.
View Article and Find Full Text PDF