Publications by authors named "M D Ynsa"

Osteosarcoma is a radioresistant cancer, and proton therapy is a promising radiation alternative for treating cancer with the advantage of a high dose concentration in the tumor area. In this work, we propose the use of iodine-substituted hydroxyapatite (IHAP) nanomaterials to use iodine (I) as a proton radiation tracer, providing access to range verification studies in mineralized tissues. For this purpose, the nanomaterials were synthesized at four iodine concentrations hydrothermal synthesis.

View Article and Find Full Text PDF

Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion.

View Article and Find Full Text PDF

The effects of plasma lipid overload on pancreatic islet function and on mineral imbalance are issues under debate. However, the outcomes may be biased by the different metabolisms of different species. This prospective study evaluated whether a high fat diet intake changed the distribution of physiologically relevant elements within pancreatic endocrine and exocrine tissues of Sprague Dawley rats and New Zealand White rabbits.

View Article and Find Full Text PDF

Heavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm).

View Article and Find Full Text PDF

Nuclear microscopy is a suite of techniques based on a focused beam of MeV protons. These techniques have the unique ability to image density and structural variations in relatively thick tissue sections, map trace elements at the cellular level to the microgram per gram (dry weight) level, and extract quantitative information on these elements. The trace elemental studies can be carried out on unstained freeze-dried tissue sections, thereby minimizing any problems of contamination or redistribution of elements during conventional staining and fixing procedures.

View Article and Find Full Text PDF