Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in (87)Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution.
View Article and Find Full Text PDFMany-particle optical lattice clocks have the potential for unprecedented measurement precision and stability due to their low quantum projection noise. However, this potential has so far never been realized because clock stability has been limited by frequency noise of optical local oscillators. By synchronously probing two ^{87}Sr lattice systems using a laser with a thermal noise floor of 1×10(-15), we remove classically correlated laser noise from the intercomparison, but this does not demonstrate independent clock performance.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2012
We describe recent experimental progress with the JILA Sr optical frequency standard, which has a systematic uncertainty at the 10-(16) fractional frequency level. An upgraded laser system has recently been constructed in our lab which may allow the JILA Sr standard to reach the standard quantum measurement limit and achieve record levels of stability. To take full advantage of these improvements, it will be necessary to operate a lattice clock with a large number of atoms, and systematic frequency shifts resulting from atomic interactions will become increasingly important.
View Article and Find Full Text PDFWe present measurements of Stark interference in the (61)S(0)→6(3)P(1) transition in (199)Hg, a process whereby a static electric field E mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to E-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, a(SI) = (a(M1) + a(E2)) = (5.8 ± 1.
View Article and Find Full Text PDFWe report the observation of resolved atomic interaction sidebands (ISB) in the (87)Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts.
View Article and Find Full Text PDF