Pinus species dominate fire-prone ecosystems throughout the northern hemisphere. Their litter drive fires that control plant community flammability and multiple ecological processes. To better understand the patterns and mechanisms of pine flammability, we measured leaf characteristics (needle length and thickness) and conducted combustion experiments on litter from 31 species.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The concept of a portable, wearable system for repetitive transcranial stimulation (rTMS) has attracted widespread attention, but significant power and field intensity requirements remain a key challenge. Here, a circuit topology is described that significantly increases induced electric field intensity over that attainable with similar current levels and coils in conventional rTMS systems. The resultant electric field is essentially monophasic, and has a controllable, shortened duration.
View Article and Find Full Text PDFGlobally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by confounding land use factors that influence wildfire and by uncertainty associated with model simulations of climate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conterminous United States for two scenarios representing lower (RCP 4.
View Article and Find Full Text PDFAcoustofluidics has promised to enable lab-on-a-chip and point-of-care devices in ways difficult to achieve using other methods. Piezoelectric ultrasonic transducers-as small as the chips they actuate-provide rapid fluid and suspended object transport. Acoustofluidic lab-on-chip devices offer a vast range of benefits in early disease identification and noninvasive drug delivery.
View Article and Find Full Text PDFThis paper describes the design and testing of a compact, battery-powered repetitive Transcranial Magnetic Stimulation (rTMS) prototype. This device generates a 10 Hz magnetic pulse train with peak flux density of 100 mT at 2 cm distance. Circuit component design, including the inductor, switched LC resonator, and boost converter, are discussed in the context of weight and size reduction, and performance optimization.
View Article and Find Full Text PDF