Publications by authors named "M D Kuchugura"

MnSnTeO, a new chiral antiferromagnet, was prepared both by topotactic transformation of the metastable rosiaite-type polymorph and by direct synthesis from coprecipitated hydroxides. Its structure and its static and dynamic magnetic properties were studied comprehensively both experimentally (through X-ray and neutron powder diffraction, magnetization, specific heat, dielectric permittivity, and ESR techniques) and theoretically (by means of density functional theory (DFT) calculations within the spin-polarized generalized gradient approximation). MnSnTeO is isostructural with MnSbO (space group 321) and does not show any structural transition between 3 and 300 K.

View Article and Find Full Text PDF

Antiferromagnetic PbMnTeO6, also known as mineral kuranakhite, has been reported recently to have all three cations in trigonal prismatic coordination, which is extremely unusual for both Mn(4+) and Te(6+). In this work, the phase was reproduced with the same lattice parameters and Néel temperature TN = 20 K. However, powder neutron diffraction unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations within the chiral space group P312.

View Article and Find Full Text PDF

MSbO compounds (M = Mg, Co, Ni, Cu, Zn) are known in the tetragonal trirutile forms, slightly distorted monoclinically with M = Cu due to the Jahn-Teller effect. In this study, using a low-temperature exchange reaction between ilmenite-type NaSbO and molten MSO-KCl (or MgCl-KCl) mixtures, these five compositions were prepared for the first time as trigonal layered rosiaite (PbSbO)-type phases. Upon heating, they irreversibly transform to the known phases via amorphous intermediates, in contrast to previously studied isostructural MnSbO, where the stable phase is structurally related to the metastable phase.

View Article and Find Full Text PDF

Temperature dependent powder and single-crystal synchrotron diffraction, specific heat, magnetic susceptibility and small-angle neutron scattering experiments have revealed an anomalous response of MnGe. The anomaly becomes smeared out with decreasing Mn content in Mn1-x Co x Ge and Mn1-x Fe x Ge solid solutions. Mn spin state instability is discussed as a possible candidate for the observed effects.

View Article and Find Full Text PDF