Background: CineECG offers a visual representation of the location and direction of the average ventricular electrical activity throughout a single cardiac cycle, based on the 12‑lead ECG. Currently, CineECG has not been used to visualize ventricular activation patterns during ischemia.
Purpose: To determine the changes in ventricular activity during acute ischemia with the use of CineECG, and relating this to changes in the ECG.
Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67‑leads) were obtained in nine normal cases.
View Article and Find Full Text PDFAim Of The Study: In this proof of concept study we aimed to visualize and quantify the injury vectors using the CineECG in representative examples of ST elevation acute myocardial infarction (STEMI) and STEMI-equivalent electrocardiograms (ECG's). For this purpose ECG's were selected with different ST deviation patterns in acute anterior wall, inferior or posterolateral wall infarctions.
Methods: The ST-amplitudes of the individual leads were measured between J-point and 60 ms after the J-point.