Publications by authors named "M D Grapes"

Material extrusion Additive Manufacturing (AM), is one of the most widely practiced methods of AM. Fused Filament Fabrication (FFF) is what most associate with AM, as it is relatively inexpensive, and highly accessible, involving feeding plastic filament into a hot-end that melts and extrudes from a nozzle as the toolhead moves along the toolpath. Direct Ink Write (DIW) 3D printing falls into this same category of AM, however is primarily practiced in laboratory settings to construct novel parts from flowable feedstock materials.

View Article and Find Full Text PDF

We report here on the design, fabrication, and calibration of nanocalorimeter sensors used in the National Institute of Standards and Technology (NIST) Nanocalorimetry Measurements Project. These small-scale thermal analysis instruments are produced using silicon microfabrication approaches. A single platinum line serves as both the heater and temperature sensor, and it is made from a 500 μm wide, 100 nm thick platinum trace, suspended on a 100 nm thick silicon nitride membrane for thermal isolation.

View Article and Find Full Text PDF

A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer.

View Article and Find Full Text PDF

To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates.

View Article and Find Full Text PDF

Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns.

View Article and Find Full Text PDF