The synthesis and crystallographic site occupancy were investigated for MgAlO with and without mechanical activation of the precursor powders. Heating to 1200 °C or higher resulted in the formation of a single spinel phase regardless of whether the powders were mechanically activated or not. Neutron diffraction analysis was used to determine cation site occupancy and revealed that mechanical activation resulted in a lower degree of cation site inversion compared to the nonactivated materials, which indicated that the powders were closer to thermodynamic equilibrium.
View Article and Find Full Text PDFSpiral spin liquids are correlated paramagnetic states with degenerate propagation vectors forming a continuous ring or surface in reciprocal space. On the honeycomb lattice, spiral spin liquids present a novel route to realize emergent fracton excitations, quantum spin liquids, and topological spin textures, yet experimental realizations remain elusive. Here, using neutron scattering, we show that a spiral spin liquid is realized in the van der Waals honeycomb magnet FeCl_{3}.
View Article and Find Full Text PDFOtoliths are frequently used to infer environmental conditions or fish life history events based on trace-element concentrations. However, otoliths can be comprised of any one or combination of the three most common polymorphs of calcium carbonate-aragonite, calcite, and vaterite-which can affect the ecological interpretation of otolith trace-element results. Previous studies have reported heterogeneous calcium carbonate compositions between left and right otoliths but did not provide quantitative assessments of polymorph abundances.
View Article and Find Full Text PDF