Publications by authors named "M D Fakhrul Islam"

Antimony-119 (119Sb) is one of the most attractive Auger-electron emitters identified to date, but it remains practically unexplored for targeted radiotherapy because no chelators have been identified to stably bind this metalloid in vivo. In a departure from current studies focused on chelator development for Sb(III), we explore the chelation chemistry of Sb(V) using the tris-catecholate ligand TREN-CAM. Through a combination of radiolabeling, spectroscopic, solid-state, and computational studies, the radiochemistry and structural chemistry of TREN-CAM with 1XX/natSb(V) were established.

View Article and Find Full Text PDF

Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.

Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.

View Article and Find Full Text PDF

Aims: This study aims to evaluate salivary alpha-amylase levels in children diagnosed with Early Childhood Caries (ECC) and Rampant Caries (RC) and compare them to levels in children without ECC or RC. It also examines the relationship between salivary alpha-amylase levels and increased caries activity in the children with ECC or RC.

Materials And Methods: A cross-sectional study was conducted at RAK College of Dental Sciences (RAKCODS) with 100 children aged 3-12 years.

View Article and Find Full Text PDF

Public health is seriously threatened by the highly pathogenic zoonotic Nipah virus (NIV). Since no effective medicines or vaccines exist, it is imperative to investigate potential therapeutic molecules against NIV. In this research, we concentrated on the G-glycoprotein of NIV as a potential therapeutic target.

View Article and Find Full Text PDF

This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation.

View Article and Find Full Text PDF