Publications by authors named "M Curty"

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

The passive approach to quantum key distribution (QKD) consists of removing all active modulation from the users' devices, a highly desirable countermeasure to get rid of modulator side channels. Nevertheless, active modulation has not been completely removed in QKD systems so far, due to both theoretical and practical limitations. In this Letter, we present a fully passive time-bin encoding QKD system and report on the successful implementation of a modulator-free QKD link.

View Article and Find Full Text PDF

We propose a fully passive linear optical quantum key distribution (QKD) source that implements both random decoy-state and encoding choices with postselection only, thus eliminating all side channels in active modulators. Our source is general purpose and can be used in, e.g.

View Article and Find Full Text PDF

Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side-channels from quantum communication systems. The security proofs require, however, that certain assumptions on the sources are satisfied. This includes, for instance, the requirement that there is no information leakage from the transmitters of the senders, which unfortunately is very difficult to guarantee in practice.

View Article and Find Full Text PDF

The performance of quantum key distribution (QKD) is severely limited by multiphoton pulses emitted by laser sources due to the photon-number splitting attack. Coherent-one-way (COW) QKD has been introduced as a promising solution to overcome this limitation, and thus extend the achievable distance of practical QKD. Indeed, thanks to its experimental simplicity, the COW protocol is already used in commercial applications.

View Article and Find Full Text PDF